
Univariate 1-Way ANOVA as a 
Linear Model with Fixed 
Regressors 
 

Group 1 Group 2 Group 3 
11x  12x  13x  
21x  22x  23x  
31x  32x  33x  

Linear Model 

 , ,i j j i jx μ α ε= + +  (1) 



Reparameterized Linear Model 

 , ,i j j i jx μ ε= +  (2) 

Matrix Form 

 =x D εμ +  (3) 

D is a “design matrix” with 1’s and 0’s, and  

 [ ]1 2 Jα α α μ′μ =  (4) 

 



Example. 
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Notice that the D matrix is not of full rank. (Why 
not? C.P.) 
 
D is of rank 3. We can partition D into two sub-
matrices, one of which is full rank, and the other of 
which contains columns that are “superfluous” in 
the sense that they are linearly dependent. 
 

 [ ]1 2=D D D  (6) 

We can similarly partition  
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Note that we could redefine μ  as 
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In which case 

 1= +x D ∗μ ε (9) 



The null hypothesis in ANOVA can be expressed 
as a “general linear hypothesis” of the form 

 ′H ∗μ = 0 (10) 

Let’s try it. 
 
Suppose 
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Notice that if both elements of the expression on 
the right in Equation (12) are equal, then all 3 jα  
must be equal, and the null hypothesis of equal 
means must be true.  
 
Notice also that there are infinitely many ways you 
can write a “hypothesis matrix” H that expresses 



the same null hypothesis. All of them will be of 
rank 2, or, in the case of J groups, 1J − . 
 
Let ′H  be of order p q× , and let x have N 
elements. (Note that this N is the total N in the case 
of ANOVA.) 
 
Under 0H , the following statistic has an F 
distribution: 
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(13) 

This looks incomprehensible at first glance! Let’s 
examine the formula with reference to our simple 3 
group ANOVA example, and let’s assume that 
sample sizes are equal in all groups. 
 
Look closely at the denominator. Note that it is the 
complementary projection operator for the column 



space of 1D . So the entire denominator can be 
written as * *′′ =

1 1D Dx Q Q x x x . So it is a sum of 
squares of the projection of x into the space 
orthogonal simultaneously to all the columns of 

1D . If you study 1D , you will see that in order for x 
to simultaneously be orthogonal to all the columns 
of 1D , each group of 3 scores must have a sum of 
zero for its group. So this is just a fancy way of 
computing mean square within. 
 
Now consider the matrix expression in the 
numerator. Recognizing that  



 ( ) 1

1 1 1

−
′ ′ =D D D x x  (14) 

On the left and the right, we have expressions of 
the form ′x  and x. Now, with equal n per group, it 
is easy to see that  

 1 1 n′ =D D I  (15) 

and so we can write the entire numerator matrix 
expression as  



 ( ) 11n n
−−′ ′ ′ ′= Hx H H IH H x x P x (16) 

At this point, deciphering the meaning of Equation 
(16) requires us to take a step back and look at HP . 
It is a column space projector for H, which has 
two columns in 3 dimensional space. But note that 
these two columns are both orthogonal to the unit 
vector 1, and are linearly independent. 
Consequently, they span the space orthogonal to 1, 

and so it must be that 
′

= = − = −
′H 1 1

11P Q I P I
1 1

. 

Consequently, the matrix quantity in Equation (16) 



is simply n times the sum of squared deviations of 
the sample means around their overall mean. Since 
p in equation (13) is one less than the number of 
groups, we recognize that the entire expression is 
simply 
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= x  (17) 



Two-Way ANOVA 
 
Notice that in the model 1=x D ε∗μ + , all the 
scores in the experiment are in a single vector x, 
and in the hypothesis statement of Equation (10), 
all the means are in a single vector. Moreover, the 
F statistic depends on the data, N, and just two 
matrix quantities, i.e., the hypothesis matrix H and 
the design matrix 1D . The design matrix is a simple 
function of the linear model in scalar form (i.e., 
Equation (2). However, it is less obvious how to 



construct the hypothesis matrices for row, column, 
and interaction, effects. We need a heuristic! 
Constructing the Hypothesis Matrix 
 
For simplicity, suppose we have a 2 2×  ANOVA, 
with 2 observations per cell. The cell means are  
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Notice that it is easy to write the null hypothesis in 
the form =AUB 0. We can write the null 
hypothesis for rows as 
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This can be written 

 0 :H =OU1 0 (20) 



We call O an omnibus contrast matrix, and it is 
always of the same basic form, i.e., 

 [ ]= −O I 1  (21) 

(Examples. C.P.) 
In a similar vein, we can write the column effect 
null hypothesis as  
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This is of the form 

 0 :H ′ ′ =1 UO 0 (23) 

The interaction null hypothesis is that there are no 
differences of differences, and consequently is of 
the form  

 0 :H ′ =OUO 0 (24) 

(C.P. Write the null hypotheses for a 3 2×  Anova 
row effect.) 



(C.P. Write the null hypothesis for a simple main 
effect for columns at level 1 of the row effect.) 
 
As straightforward as this system is, unfortunately 
the null hypothesis requires all the means in a 
single vector μ , not in a matrix, and there is only 
one hypothesis matrix, not two as in the examples 
above. So how do we proceed?   
 
First, we need to define the Kronecker Product. 
 



Kronecker (Direct) Product 
 
The Kronecker product of two matrices A and B is 
denoted ⊗A B, and can be written in partitioned 
form as  
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The Kronecker product above is of order pq rs× . 
 
Kronecker products have some interesting 
properties. Let vec ( )c X  be a column vector 
consisting of the columns of X stacked on top of 
each other. Let vec ( )r X  be a column vector 
consisting of the rows of X transposed into 
columns and stacked on top of each other. Then 

 ( )vec ( ) vec ( )c c′ = ⊗BSA A B S  (26) 

and, since vec ( ) vec ( )r c′ =S S , we also have 



 ( )vec ( ) vec ( )r r′ = ⊗ASB A B S  (27) 

 ( )vec ( ) vec ( )r r′= ⊗ASB A B S  (28) 

Consider the null hypothesis of Equation (20). This 
can be written as 0 :H =OU1 0, or as  

 ( ) ( )0 : vecrH ′⊗ =O 1 U 0 (29) 



Example. Consider the null hypothesis of no row 
effect in the 2 2×  ANOVA. 
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Equation (30) gives ( ) ( )1,1 1,2 2,1 2,2μ μ μ μ+ − + , 
which is the quantity that is zero when there is no 
row main effect. 
 



General Specification of the Hypothesis 
Matrix in Factorial Anova 
 
1. Call the effects A, B, C etc. 
2. A conformable Omnibus Matrix for effect A is 
denoted AO . 
3. A conformable Summing Vector for effect A is 
denoted A′1 . 
4. A selection vector ,A j′s  is a row vector 
conformable with factor A with a 1 in position j, 
and zeroes elsewhere.  
 



 
1. To construct an H for a main effect, use an O 
matrix for that effect and a summing vector for all 
other effects. 
 
2. To construct an H for an interaction effect, use 
an O matrix for all effects in the interaction, and a 
summing vector for all effects not in the 
interaction. 
 
3. To construct the H for a simple main effect,  use 
selection vector(s) to select the levels for the 



simple main, then use an O matrix for the main 
effect tested. 
 
Examples. 2-way ( )A B×  ANOVA 
 
A Main Effect  A B′⊗O 1  
B Main Effect  A B′ ⊗1 O  
AB Interaction Effect A B⊗O O  
Simple Main Effect of A at Level 1 of B ,1A B′⊗O s  



Examples. 3-way ( )A B C× ×  ANOVA 
 
ABC Interaction Effect  A B C⊗ ⊗O O O  
A Main Effect A B C′ ′⊗ ⊗O 1 1  
 
 
Now that we understand how to express univariate 
ANOVA in matrix notation, we move on to 
MANOVA. 


